SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules.

نویسندگان

  • Godwin Job
  • Christiane Brugger
  • Tao Xu
  • Brandon R Lowe
  • Yvan Pfister
  • Chunxu Qu
  • Sreenath Shanker
  • José I Baños Sanz
  • Janet F Partridge
  • Thomas Schalch
چکیده

Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHREC, an Effector Complex for Heterochromatic Transcriptional Silencing

Transcriptional gene silencing (TGS) is the mechanism generally thought by which heterochromatin effects silencing. However, recent discovery in fission yeast of a cis-acting posttranscriptional gene-silencing (cis-PTGS) pathway operated by the RNAi machinery at heterochromatin challenges the role of TGS in heterochromatic silencing. Here, we describe a multienzyme effector complex (termed SHRE...

متن کامل

HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms.

HP1 proteins are a highly conserved family of eukaryotic proteins that bind to methylated histone H3 lysine 9 (H3K9) and are required for heterochromatic gene silencing. In fission yeast, two HP1 homologs, Swi6 and Chp2, function in heterochromatic gene silencing, but their relative contribution to silencing remains unknown. Here we show that Swi6 and Chp2 exist in nonoverlapping complexes and ...

متن کامل

Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions.

High-resolution nucleosome occupancy maps of heterochromatic regions of wild-type and silencing-defective mutants of the fission yeast Schizosaccharomyces pombe revealed that heterochromatin induces the elimination of nucleosome-free regions (NFRs). NFRs associated with transcription initiation sites as well as those not associated with promoters are affected. We dissected the roles of the hist...

متن کامل

The PHD Finger/Bromodomain of NoRC Interacts with Acetylated Histone H4K16 and Is Sufficient for rDNA Silencing

The SNF2h-containing chromatin-remodeling complex NoRC is responsible for silencing a fraction of mammalian rRNA genes (rDNA). NoRC silences transcription by establishing heterochromatic features-including DNA methylation, hypoacetylation of histone H4, and methylation of H3K9-at the rDNA promoter []. We have investigated the mechanism of NoRC-mediated rDNA silencing and show that binding of th...

متن کامل

Active repression of methylated genes by the chromosomal protein MBD1.

MBD1 belongs to a family of mammalian proteins that share a methyl-CpG binding domain. Previous work has shown that MBD1 binds to methylated sites in vivo and in vitro and can repress transcription from methylated templates in transcription extracts and in cultured cells. In the present study we established by several experimental criteria that, contrary to a previous report, MBD1 is not a comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2016